SHORT PAPER

Novel dispiro iminodioxolane derivatives: synthesis by reaction of isocyanides with ninhydrin[†] Ahmad Shaabani,^a* Mohammad Bagher Teimouri^a and Hamid Reza Bijanzadeh^b

^aDepartment of Chemistry, Shahid Beheshti University, Zip Code 1983963113, Tehran, Iran ^bDepartment of Chemistry, Tarbiat Modarres University, PO Box 14155–4838, Tehran, Iran

The reaction of isocyanides **1** with two equivalent of ninhydrin **2** gives C_s symmetry dispiro iminodioxolanes **3** at refluxing conditions in chloroform in fairly high yields.

Keywords: ioscyanide, ninhydrin, dispiro, iminodioxolane

Isocyanides by virtue their carbenic character, react readily with most common multiple bonds to give acyclic or cycloadducts derived by formal 1:1, 1:2 and 2:1 substrateisocyanide interactions.¹⁻³ Cycloaddition of this type is unique to isocyanides. The reaction of isocyanides with carboncentered double bonds occurs in stepwise manner and is initiated by a zwitterionic intermediate whose ultimate fate appears to be dictated by the nature of the original double bond in the substrate.^{4,5} Isocyanides insert preferentially into the carbon–oxygen double bond of electron-deficient ketones, such as hexafluoroacetone, to afford imino-1,3-dioxolanes in high yield.^{6,7}

Ninhydrin is a unique tricarbonyl compound which is widely used in biochemical and medical settings for the analysis of amino acids.⁸ Although the reactivity of the central carbonyl of ninhydrin has long been recognised, this highly electron-deficient moiety has not been utilised in synthesis. In view of our general interest in chemistry of isocyanides,⁹⁻¹⁷ we have examined the reaction of ninhydrin as a compound which has an electron-deficient carbonyl group similar to hexafluoroacetone⁶ with isocyanides and our results have been reported here.

The reaction of isocyanides **1** with ninhydrin **2** was carried out in refluxing chloroform for 30 min. and a 2:1 adduct of the ninhydrin and isocyanide was formed. This adduct, which is a C_s symmetry dispiro iminodioxolane **3**, is the only product formed regardless of the molar ratio of the reactant or order of addition.

* To receive any correspondence. E-mail: a-shaabani@cc.sbu.ac.ir

[†] This is a Short Paper, there is therefore no corresponding material in J Chem. Research (M).

Scheme 2

The structure of these adducts were established as **3** by their elemental analysis and their IR, ¹H NMR and ¹³C NMR spectra. The nature of these compounds as 1:2 adduct was also apparent from the elemental analysis as well as from the mass spectra, which for **3a** and **3b** displayed M+1 peaks instead of molecular ion peaks at m/z 404 and 430, respectively. For **3c** and **3d** molecular ion peak was seen at m/z 437 and 451, respectively.

The ¹H NMR spectrum of **3a** exhibited a single sharp line readily recognised as arising from *tert*-butyl ($\delta_{\rm H}$ 1.12) and along with four multiplets ($\delta_{\rm H}$ 7.91–8.15) for four kinds of aromatic protons. The ¹H decoupled ¹³C NMR spectrum of **3a** showed 13 distinct resonances which is in agreement with C_s symmetry of structure and the characteristic signals due to two spiro carbons were discernible at $\delta_{\rm C}$ 82.50 and 96.93.

The ¹H decoupled ¹³C NMR spectra of **3b–d** are similar to those of **3a** except for the alkyl or arylimino group, which exhibit characteristic signals with appropriate chemical shifts.

We have not established a mechanism for the formation of 4-alkyl(aryl)imino-2,5-bis(2',2'-spiro-1',3'-dioxoindanyl)-1,3-dioxolane **3**. However, a possible explanation is shown in Scheme 2.

In conclusion, we have found that the one-pot reaction of isocyanides with two equivalents of ninhydrin leads to a facile synthesis of dispiro iminodioxolane derivatives under neutral conditions and without using any catalyst after several minutes.

Experimental

Melting points were measured on an Electrothermal 9100 apparatus and are uncorrected. Elemental analyses were performed using a Heraeus CHN-O-Rapid analyzer. Mass spectra were recorded on a FINNIGAN-MAT 8430 mass spectrometer operating at an ionisation potential of 70 eV. IR spectra were recorded on a Shimadzu IR-470 spectrometer. ¹H and ¹³C NMR spectra were recorded on a Bruker DRX-500 Avance spectrometer at 500.13 and 125.77 MHz, respectively. NMR spectra were obtained on solutions in CDCl₃ using TMS as internal standard. The ninhydrin and *tert*-butyl, cyclohexyl and 2,6-dimethylphenyl isocyanides used in this work were purchased from Fluka (Buchs, Switzerland) chemical company and the benzyl isocyanide were obtained from Aldrich chemical company. Typical procedure for preparation of 4-tert-Butylimino-2,5-bis(2', 2'-spiro-1',3'-dioxoindanyl)-1,3-dioxolane (3a): To a magnetically stirred solution of ninhydrin (0.356 g, 2 mmol) in dry chloroform (20 ml) was added *tert*-butyl isocyanide (0.084 g, 1 mmol) via a syringe and refluxing was continued for 30 min. The solvent was removed under vacuum and the residue was washed with diethyl ether. It was recrystallised from ethanol to give a cream powder. (0.327 g, 81 %). M.p. 253–254 °C. IR (KBr) (v_{max}, cm⁻¹): 1754 and 1721 (C=O), 1586 (N=C). ¹H NMR (CDCl₃, Me₄Si): $\delta_{\rm C}$ 29.47 (3 CH₃), 7.91–8.15 (8 H, m, arom). ¹³C NMR (CDCl₃, Me₄Si): $\delta_{\rm C}$ 29.47 (3 CH₃), 55.44 (C(CH₃)₃), 82.50 and 96.93 (2 spiro carbons), 124.47, 124.73, 136.47, 137.47, 140.15 and 141.75 (arom.), 145.90 (N=C), 190.45, 191.06 (4 C=O). MS (*m*/z, %) 404 (MH⁺, 22), 348 (17), 149 (51), 104 (44), 76 (47), 57 (100), 41 (30). Anal. Calcd. for C₂₃H₁₇NO₆ (403.43): C, 68.47; H, 4.24; N, 3.47%. Found: C, 68.4; H, 4.3; N, 3.4%.

4-Cyclohexylimino-2, 5-bis(2',2'-spiro-1', 3'-dioxoindanyl)-1, 3-dioxolane (**3b**): Cream powder. (0.335 g, 78 %). M.p. 252–253 °C. IR (KBr) (v_{max} , cm⁻¹): 1739 and 1714 (C=O), 1578 (N=C). ¹H NMR (CDCl₃, Me₄Si): $\delta_{\rm H}$ 1.12–1.64 (10 H, m, 5 CH₂), 3.50 (1 H, m, N-CH) 7.92–8.16 (8H, m, arom). ¹³C NMR (CDCl₃, Me₄Si): $\delta_{\rm C}$ 24.29, 25.53 and 32.97 (5 CH₂), 57.11 (N-CH), 82.03 and 96.70 (2 spiro carbons), 124.60, 124.74, 136.65, 137.53, 140.14 and 141.70 (arom.), 148.49 (N=C), 190.40, 190.77 (4 C=O). MS (m/z, %) 430 (MH⁺, 34), 172 (63), 149 (98), 132 (22), 104 (85), 83 (70), 76 (80), 55 (100), 41 (73). Anal. Calcd. for C₂₅H₁₉NO₆ (429.46): C, 69.91; H, 4.46; N, 3.26%. Found: C, 69.8; H, 4.5; N, 3.2%.

4-Benzylimino-2, 5-bis(2', 2'-spiro-1', 3'-dioxoindanyl)-1, 3-dioxolane (3c): Light brown powder. (0.350 g, 80 %). M.p. 199–200 °C. IR (KBr) (v_{max} , cm⁻¹): 1724 and 1718 (C=O), 1577 (N=C). ¹H NMR (CDCl₃, Me₄Si): δ_{H} 4.53 (2 H, s, CH₂), 7.09-7.23 (5 H, m, C₆H₅), 7.92–8.17 (8 H, m, 2 C₆H₄). ¹³C NMR (CDCl₃, Me₄Si): δ_{C} 51.90 (CH₂), 82.59 and 97.17 (2 spiro carbons), 124.72, 124.83, 126.76, 127.16, 128.28, 136.84, 137.66, 138.19, 140.10 and 141.62 (arom.), 151.27 (N=C), 189.95, 190.30 (4 C=O). MS (m/z, %) 437 (M⁺, 4), 264 (10), 223 (5), 132 (7), 104 (39), 91 (100), 76 (46). Anal. Calcd. for C₂₆H₁₅NO₆ (437.44): C, 71.38; H, 3.45; N, 3.20%. Found: C, 71.3; H, 3.5; N, 3.2%.

4-(2, 6-Dimethylphenylimino)-2, 5-bis(2', 2'-spiro-1', 3'dioxoindanyl)-1, 3-dioxolane (3d): Cream powder. (0.303 g, 67%). M.p. 286–287 °C. IR (KBr) (v_{max} , cm⁻¹): 1754 and 1731 (C=O), 1586 (N=C). ¹H NMR (CDCl₃, Me₄Si): $\delta_{\rm H}$ 2.08 (6 H, s, 2 CH₃), 6.84–8.18 (11 H, m, arom.). ¹³C NMR (CDCl₃, Me₄Si): $\delta_{\rm C}$ 17.70 (2 CH₃), 82.82 and 97.42 (2 spiro carbons), 124.25, 124.71, 124.78, 127.55, 127.96, 137.04, 137.61, 140.07, 141.66 and 142.42 (arom.), 150.37 (N=C), 189.39, 189.92 (4 C=O). MS (m/z, %) 451 (M⁺, 32), 275 (97), 246 (30), 218 (16), 132 (34), 104 (100), 76 (98), 50 (40). Anal. Calcd. for C₂₇H₁₇NO₆ (451.47): C, 71.83; H, 3.79; N, 3.10%. Found: C, 71.7; H, 3.9; N, 3.1%.

Financial support for this work by the research affairs of Shahid Beheshti University, Tehran, Iran is gratefully acknowledged.

Received 16 February 2003; accepted 29 May 2003 Paper 03/1772

References

- 1 I. Ugi, Angew. Chem. Int. Ed. Engl., 1982, 21, 810.
- 2 H.M. Walborsky and M.P. Persinsamy, In: *The Chemistry of Functional Groups, Supplement C*, S. Patai and Z. Rappoport, (Eds.), Wiley: New York, 1983, Chap. 20, pp. 835-887.
- 3 S. Marcaccini and T. Torroba, Org. Prep. Proc. Int., 1993, 25, 141.
- 4 Y. Ito, H. Kato and T. Saegusa, J. Org. Chem., 1982, 47, 741.
- 5 N. Obata and T. Takizawa, Tetrahedron Lett., 1969, 3403.
- 6 W.J. Middletom, D.C. England and C.G. Krespan, *J. Org. Chem.*, 1967, **32**, 948.
- 7 B. Zeeh, Synthesis, 1969, 65.
- 8 M.M. Joullie, T.R. Thompson and N.H. Nemeroff, *Tetrahedron*, 1991, **47**, 879 and references cited therein.
- 9 I. Yavari, A. Shaabani and M.T. Maghsoodlou, *Monatsh. Chem.*, 1997, **128**, 697.
- 10 I. Yavari, A. Shaabani, S. Asghari, M. Olmsted and N. Safari, J. Fluorine Chem., 1997, 86, 77.
- 11 A. Shaabani and F. Farrokhzad, J. Chem. Res.(S), 1997, 344.
- 12 A. Shaabani, S. Ajabi, F. Farrokhzad, and H.R. Bijanzadeh, J. Chem. Res.(S), 1999, 582.
- 13 A. Shaabani, I. Yavari, M.B. Teimouri, A. Bazgir, and H.R. Bijanzadeh, *Tetrahedron*, 2001, **57**, 1375.
- 14 A. Shaabani, M.B. Teimouri and H.R. Bijanzadeh, J. Chem. Res.(S), 2002, 381.
- 15 A. Shaabani, A. Bazgir, K. Soleimani and H.R. Bijanzadeh, J. Flourine. Chem., 2002, 116, 93.
- 16 A. Shaabani, M.B. Teimouri and H.R. Bijanzadeh, *Tetrahedron Lett.*, 2002, 43, 9151.
- 17 A. Shaabani and M.B. Teimouri, J. Chem. Res(S), 2002, 433.